A NEW REPRESENTATION FOR SMALL-BODY

GRAVITY ESTIMATION
Brandon A. Jones, Gregory Beylkin, George H. Born, and Robert S. Provence

One of the options proposed in the 2009 Review of the U. S. Human Spaceflight Plans Committee calls
for the consideration of robotic and human missions to asteroids.! Beginning in 2000, the NEAR Shoemaker
spacecraft inserted into orbit about the asteroid 433 Eros, and studied it for a year before landing. The
Hayabusa satellite journeyed to 25143 Itokawa, and operated in a proximity of the asteroid for several months
before landing to collect a return sample. Additionally, the DAWN satellite, which was launched in 2007,
will explore the dwarf-planet Ceres and the asteroid 4 Vesta in the next three years. These are just several
examples of current interests in exploring asteroids.

For spherical bodies such as the Earth and Moon, the spherical harmonics gravity model is commonly used
to approximate the gravity perturbations due to non-uniform mass distributions. As seen in Fig. 1, both the
asteroids Eros and Itokawa are roughly elliptical in shape. For this reason, the elliptical harmonics model
is more appropriate than the spherical one. As expected in the case of Eros, results indeed demonstrate the
advantages of the elliptical harmonics gravity model.? For both the spherical and elliptical harmonics models,
the partial sum diverges for points within the circumscribing sphere (or ellipsoid), thus limiting the minimum
valid altitude. Unfortunately, not all asteroids are ellipsoidal and, thus, other gravity representations are
required.
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Figure 1: Asteroids 25143 Itokawa (left) and 433 Eros (right, as seen from opposite sides)

An allernative approximation models the asteroid as a constant density polyhedron.* Unfortunately, such
a model is computationally expensive,® and is not easy to use in the orbit determination process.* The
pubtree model, an interpolation model based on the polyhedron, improves computational efficiency while
allowing evaluation at any point above the asteroid’s surface.’ Another proposed model uses a finite element
representation of the asteroid, i.e. a collection of cubes or spheres with different masses, which may also
be used for gravity field estimation.* However, this model may become computationally expensive and the
estimation problem ill-conditioned if the number of masses is large.

In this paper, we explore an alternative for estimating the gravity field of a small body using observations of
an orbiting satellite. Our approach uses two new mathematical tools, the quadratures (on a sphere) invariant
under the icosahedral group, and a multiresolution representation of the gravity potential.” With the near
optimal quadratures on the sphere, we minimize the number of parameters needed to recover a function. Also,
instead of estimating the coefficients of the spherical harmonics, the new quadratures allow us to estimate
directly the values of the gravity field since they offer an analogue of the Lagrange-type interpolation.

In the radial direction, our approach is based on a multiresolution representation of a solution of the external
problem for the Laplace equation with boundary conditions on the sphere. Specifically, as derived in Section
5.3 of Beylkin and Monzén,® the gravity potential (U) may be approximated (to any finite but arbitrary



precision) by
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where p is the ratio of the instantaneous orbit radius and the radius of the primary body (p = r/R). ¢ and 8
are the latitude and longitude, respectively, and where
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The parameter h appears as a result of discretizing an integral approximating 1/r™ for n > 1 in the usual
solution of the Laplace’s equation via the spherical harmonics, and 032- = 2e/". The choice of h determines
the accuracy of the approximation. The functions U, (¢, ) in Eq. 2 are the spherical harmonic part (of degree
n) of the gravity potential in the usual solution of Laplace’s equation via the spherical harmonics. However,
in our approach we estimate functions Z; (¢, #) directly, thus avoiding any use of the spherical harmonics. We
note that, for a given accuracy, the exponential cutoff in Eq. 1 allows us to predict the order and degree of the
subspace of spherical harmonics for the functions Z; and, thus, choose the appropriate number of quadrature
nodes for estimation. Using new quadratures, we need to estimate values of functions Z; at these quadrature
nodes. We also note that, as described in Beylkin and Monzén,® the number of terms in Eq. 1 depends only
weakly on the required resolution and is relatively small. For a fixed p, only a few terms in Eq. 1 contribute
to the potential.
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In many ways, the resulting representation is similar to the cubed-sphere gravity model, which maps the
sphere to a cube with bases defined on the cube surface for evaluation of the gravity field.® We choose the
new representation of the potential (Eq. 1) since it is more economical for the purpose of estimation as it
minimizes the number of measurements required.

With the mathematical approach now in place, this paper presents initial estimates of the gravity field for
Eros given the NEAR mission as a baseline. Similar mission design and measurement accuracies will be used,
with the NEAR15A gravity model® serving as the defined truth. Results presented include a comparison of
the estimated gravity model, and differences in orbit propagation.
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